# How to re write as a logarithmic equation

Between the two of us we arrived at a useful description of the problem and the equations to solve it. A useful tool for engine designers. Solving logarithmic equations Video transcript We're asked to solve the log of x plus log of 3 is equal to 2 log of 4 minus log of 2. So let me just rewrite it. So we have the log of x plus the log of 3 is equal to 2 times the log of 4 minus the log of 2, or the logarithm of 2.

And this is a reminder. Whenever you see a logarithm written without a base, the implicit base is So we could write 10 here, 10 here, 10 here, and 10 here.

## 3 Logarithmic Functions

But for the rest of this example, I'll just skip writing the 10 just because it'll save a little bit of time. But remember, this literally means log base So this expression, right over here, is the power I have to raise 10 to to get x, the power I have to raise 10 to to get 3. Now with that out of the way, let's see what logarithm properties we can use.

So we know, if we-- and these are all the same base-- we know that if we have log base a of b plus log base a of c, then this is the same thing as log base a of bc. And we also know-- so let me write all the logarithm properties that we know over here. We also know that if we have a logarithm-- let me write it this way, actually-- if I have b times the log base a of c, this is equal to log base a of c to the bth power.

And we also know, and this is derived really straight from both of these, is that if I have log base a of b minus log base a of c, that this is equal to the log base a of b over c. And this is really straight derived from these two right over here. Now with that out of the way, let's see what we can apply.

So right over here, we have all the logs are the same base. And we have logarithm of x plus logarithm of 3. So by this property right over here, the sum of logarithms with the same base, this is going to be equal to log base sorry, log base so I'll just write it here. Then, based on this property right over here, this thing could be rewritten-- so this is going to be equal to-- this thing can be written as log base 10 of 4 to the second power, which is really just So this is just going to be And then we still have minus logarithm base 10 of 2.

And now, using this last property, we know we have one logarithm minus another logarithm. This is going to be equal to log base 10 of 16 over 2, 16 divided by 2, which is the same thing as 8. So the right-hand side simplifies to log base 10 of 8.

The left-hand side is log base 10 of 3x. So if 10 to some power is going to be equal to 3x. And 10 to the same power is going to be equal to 8. So 3x must be equal to 8. Divide both sides by 3, you get x is equal to 8 over 3. One way, this little step here, I said, look, 10 to the-- this is an exponent.

If I raise 10 to this exponent, I get 3x, 10 to this exponent, I get 8. So 8 and 3x must be the same thing. One other way you could have thought about this is, let's take 10 to this power, on both sides.

You can use regardbouddhiste.coma regardbouddhiste.com to write out the formula using VBA. I also give an in sheet method for completeness. The advantage below is to show you how to start checking the trend type is the one you want and serves as the basis for expanding to loop over other series if needed. When looking at the equation of the moved function, however, we have to be careful.. When functions are transformed on the outside of the \(f(x)\) part, you move the function up and down and do the “regular” math, as we’ll see in the examples regardbouddhiste.com are vertical transformations or translations, and affect the \(y\) part of the function. When . Lastly, remove the word "log" from the equation and you'll have successfully converted the equation! You can also use the same idea to convert exponential form to logarithmic by doing the reverse of what we explored in this article.

So you could say 10 to this power, and then 10 to this power over here. If I raise 10 to the power that I need to raise 10 to to get to 3x, well, I'm just going to get 3x.

If I raise 10 to the power that I need to raise 10 to to get 8, I'm just going to get 8. So once again, you've got the 3x is equal to 8, and then you can simplify.I have a set of data and I want to compare which line describes it best (polynomials of different orders, exponential or logarithmic).

I use Python and Numpy and for polynomial fitting there is a function polyfit().But I found no such functions for exponential and logarithmic fitting. solve the following logarithmic equation. Be sure to reject any value of x that is not in thedomain of the orginal logarithmic expression.

I know how to solve via logarithmic differentiation, but I can't figure out how to re-write the exponent(s) as logs. Could someone help me?

[BINGSNIPMIX-3

y= asked by Jessie on January 24, Write a logarithmic. Online homework and grading tools for instructors and students that reinforce student learning through practice and instant feedback. PC Chapter Preview and Homework I can convert exponential equations to logarithms and visa versa Use the “circle of logs” to convert the logarithm into an exponential equation.

In order to write down the equation of plane we need a point (we’ve got three so we’re cool there) and a normal vector. We need to find a normal vector. Write each logarithmic equation in exponential form.

4. lo g 9 3 5. lo g 2 64 6 6. log 3 b 9, x 3, a b 2, x 6, a 64 b 10, x 3, a 9 3 2 6 64 1 0 3 Name Date Class Reteach Logarithmic Functions LESSON If b to the x power equals a, then x is the logarithm of a in base b.

base, b 3 exponent, x 4.

excel - Copying and pasting logarithmic trend line equation from chart into cell - Stack Overflow